WELSCHINGER, M. Lilian (2025) Learning to Solve PDEs on Neural Fields PFE - Projet de fin d'études, ENSTA.

Aucun fichier n'a encore été téléchargé pour ce document.

Résumé

Solving partial differential equations (PDEs) on surfaces underpins denoising, fairing, harmonic interpolation, and shape analysis, yet prevailing solvers assume meshes while modern 3D assets increasingly live as neural implicit surfaces. This mismatch leaves no suitable method to solve surface PDEs within the neural domain, forcing brittle mesh extraction or per-instance residual training. We present a novel, mesh-free formulation that learns a local update operator conditioned on implicit shape attributes and applies a single grid-to-grid step in a narrow band to advance the surface PDE solution. The operator integrates naturally with neural fields, is trained once on representative patches, and generalizes across shapes and topologies, enabling accurate, fast inference without meshing or per-instance optimization while preserving differentiability. Across analytic benchmarks (sphere and torus) and real neural assets, our approach achieves competitive accuracy and runtime compared to established baselines, and, to our knowledge, delivers the first end-to-end pipeline that solves and uses surface PDEs directly on neural implicit representations.

Type de document:Rapport ou mémoire (PFE - Projet de fin d'études)
Mots-clés libres:Deep Learning, Neural Surface, PDEs on Manifolds, Mesh-free Methods
Sujets:Mathématiques et leurs applications
Code ID :10866
Déposé par :Lilian WELSCHINGER
Déposé le :20 oct. 2025 17:32
Dernière modification:20 oct. 2025 17:32

Modifier les métadonnées de ce document.