Claeys, M. Xavier (2008) Analyse asymptotique et numérique de la diffraction d’ondes par des fils minces Autre, ENSTA.

Fichier(s) associé(s) à ce document :

[img]PDF
Restricted to Administrateur de l'archive uniquement

4Mb

Résumé

Cette thèse traite de la modélisation de la propagation d’ondes dans des milieux comportant des filsminces i.e. dont l’épaisseur est bien plus petite que la longueur d’onde. En appliquant laméthode des développements raccordés, nous dérivons un développement de la solution de l’équation de Helmholtz en 2D autour d’un petit obstacle avec condition de Dirichlet sur le bord et proposons un modèle approché dans lequel intervient une condition de Dirichlet moyennée. Par ailleurs nous proposons et analysons deux méthodes numériques non standard pour en calculer la solution avec précision : l’une est adaptée de la méthode de la fonction singulière et l’autre est une version scalaire de la méthode de Holland. Nous démontrons la consistance de ces méthodes. Nous effectuons ensuite le même travail en 3D pour le problème de Helmholtz avec condition de Dirichlet sur le bord d’un objet filiforme dont les pointes sont arrondies ellipsoïdalement. Nous dérivons également unmodèle approché dont l’étude mène à une justification théorique de l’équation de Pocklington dans sa version scalaire.

Type de document:Rapport ou mémoire (Autre)
Sujets:Mathématiques et leurs applications
Unité d'appartenance:
Code ID :5186
Déposé par :Sophie Chouaf
Déposé le :08 juin 2009 02:20
Dernière modification:05 juin 2013 09:13

Modifier les métadonnées de ce document.