DUMON, Edouard (2016) Optimal Power Flow with Unit Commitment : Solving a Mixed-Integer Power Flow Probem using Positive SemiDefinite Relaxations PFE - Projet de fin d'études, ENSTA.

Fichier(s) associé(s) à ce document :

[img]
Prévisualisation
PDF
Available under License Creative Commons Attribution Share Alike.

411Kb

Résumé

The application of semidefinite programming (PSD) to the resolution of the Optimal Power Flow problem (OPF) has recently been the focus of significant research effort. In con- junction with sparsity-exploiting techniques, it can yield globally optimal solutions for well-conditioned large-scale networks. In this paper, we show that these techniques can theoretically be extended to a larger class of problems, incorporating binary variables to enable unit (de-)commitment, and solve small-scale problems using package GloptiPoly as a proof of concept. We then study the influence of Unit Commitment variables on problem sparsity and show that the sparse structure is largely preserved, suggesting that sparsity-exploiting techniques may efficiently address Optimal Power Flow with Unit Commitment (OPF-UC) problems on mid-to-large-scale networks. Finally, we use the SparsePOP package to solve OPF-UC problems on networks with up to 39 buses to global optimality.

Type de document:Rapport ou mémoire (PFE - Projet de fin d'études)
Sujets:Mathématiques et leurs applications
Code ID :6882
Déposé par :Edouard DUMON
Déposé le :17 janv. 2017 11:20
Dernière modification:17 janv. 2017 11:20

Modifier les métadonnées de ce document.