Boyer, M Thomas (2023) Diffusion models image-to-image translation: revealing subtle phenotypes in a low-data regime PFE - Projet de fin d'études, ENSTA.
Aucun fichier n'a encore été téléchargé pour ce document.
Résumé
In many biological applications the natural variability within images often largely overlaps the phenotypic variability between drug or disease conditions, making the last essentially invisible to the human eye. Unpaired image-to-image translation machine learning methods aim at learning a mapping from a source to a target domain and have successfully been used to transfer biological images between non-obvious conditions. This internship work is focused on exploring an emerging class of deep models –dubbed diffusion models– in the additional context of a low data regime, and adapting them to this domain transfer task.
Type de document: | Rapport ou mémoire (PFE - Projet de fin d'études) |
---|---|
Sujets: | Sciences et technologies de l'information et de la communication Mathématiques et leurs applications Sciences de la vie et ingénierie du vivant |
Code ID : | 9846 |
Déposé par : | Thomas BOYER |
Déposé le : | 31 oct. 2023 17:12 |
Dernière modification: | 31 oct. 2023 17:12 |