HABIBOULLAH, M Mohamed Laghdaf (2023) A Proximal Modified Quasi-Newton Method for Nonsmooth Regularized Optimization PFE - Projet de fin d'études, ENSTA.

Attention

L'Eprint que vous recherchez existe dans une version plus récente. Cliquer ici pour la visualiser

Aucun fichier n'a encore été téléchargé pour ce document.

Résumé

We develop method R2N, a modified quasi-Newton method for minimizing the sum of a smooth 𝑓 with Lipschitz gradient and lower semi-continuous prox-bounded h. Both 𝑓 and h may be nonconvex and may be bound constrained. At each iteration, our method computes a step by minimizing the sum of a convex quadratic quasi-Newton model of 𝑓 , a model of h, and an adaptive quadratic regularization term. A step may be computed by way of methods R2 [2] or TRDH [21]. In variant R2N-DH, the model of 𝑓 is diagonal, which allows us to compute a step without resort to a subproblem solver for a few separable h that are relevant in applications. R2N-DH can also be used as subproblem solver inside R2N. We establish global convergence of a first-order stationarity measure to zero and a worst-case evaluation complexity bound of 𝑂(𝜖−2) to bring said measure below 𝜖 ∈ (0, 1). Furthermore, we extend our analysis to consider worst-case complexity in more general scenarios, even when the approximation of the Hessian is unbounded. We describe our Julia implementation and report numerical experience on inverse problems, and a minimum-rank matrix completion problem.

Type de document:Rapport ou mémoire (PFE - Projet de fin d'études)
Sujets:Mathématiques et leurs applications
Code ID :9901
Déposé par :Mohamed laghdaf Habiboullah
Déposé le :28 nov. 2024 15:19
Dernière modification:28 nov. 2024 15:19

Versions disponibles de ce document

Modifier les métadonnées de ce document.