ALBOT, MME Axelle (2019) Méthode de politique directe par apprentissage pour l’optimisation stochastique de systèmes hydroélectriques PFE - Project Graduation, ENSTA.
![]()
| HTML 6Mb | |
![]()
| PDF 6Mb |
Abstract
Hydroelectricity plays an important role in the electricity demand supply balance. However, it is a rather random and limited ressource. At EDF, mid-term (that is to say annual basis) optimisation of hydropower reservoirs is calculated with a stochastic dynamic programming algorithm. This algorithm hasshowntobeeffectiveinmanagingvalleyswithfewreservoirsbutrequieressimplifyingassumptions to deal with larger valleys. Indeed, its complexity grows exponentially with the number of optimised storages. Directpolicysearchisanalternativemethodofstochasticdynamicprogramming.Apolicyisafunction which determines actions depending on state variables of the optimized system. Direct policy search aims at choosing a set of parametrized functions and searching the best policy among this set. Optimisation of large size valleys is made possible through this new approach. This report is devoted to direct policy search study. Specifically, a Primal-Dual algorithm will be implemented to optimise storagesunderconstraints.Theresultswillbecomparedtostochasticdynamicprogrammingonesinorder to measure potential stakes of the direct policy search applied to hydropower systems.
Item Type: | Thesis (PFE - Project Graduation) |
---|---|
Uncontrolled Keywords: | Recherche directe de politique - Réseaux de neurones profonds - Apprentissage par renforcement - Dualisation de contraintes - Programmation dynamique stochastique - Hydroélectricité |
Subjects: | Mathematics and Applications |
ID Code: | 7909 |
Deposited By: | Axelle Albot |
Deposited On: | 27 janv. 2020 14:50 |
Dernière modification: | 27 janv. 2020 14:50 |
Repository Staff Only: item control page